If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4a^2+34a=0
a = 4; b = 34; c = 0;
Δ = b2-4ac
Δ = 342-4·4·0
Δ = 1156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1156}=34$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(34)-34}{2*4}=\frac{-68}{8} =-8+1/2 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(34)+34}{2*4}=\frac{0}{8} =0 $
| 20y-100=400 | | 20y-100=400* | | 2b+4(-6+7b)=-24 | | 13x+41=171 | | u/5+14=–6 | | 9y-9=126 | | 2=k/15 | | -3(2m-4)=18 | | 4s−–2=18 | | q–6/–15=1 | | -3/4x+6=-15 | | 1/18=z/9 | | 50x+37=137 | | 5y+14=84 | | (5x-12)+(4x+3)=180 | | 77 = 11 t | | 3(2x-4)=-36 | | w20+2=5 | | 4(w-1)=-16 | | 7 n= 144 | | 3(2x+5)-x=45 | | z+6=48 | | 4(w-1)=-16 w= | | 3w-63=11w | | 90 = 9 r | | 19-y=-15 | | 10/n+5=13 | | 164=8-y | | -2(1-8v)=-26 | | 11/k=22/19 | | r/16+10=12 | | 5v+1=11 |